On Decomposition of Ideal Sets by Using Alpha- Local Function

*1N. Deena and T. Asir

1Research Scholar, Department of Mathematics, Madurai Kamaraj University Madurai-21, Tamil Nadu, India
2Department of Mathematics, DDE, Madurai Kamaraj University, Madurai-21. Tamil Nadu, India.

Note: * Indicates corresponding author

ARTICLE DETAILS

ABSTRACT

In this paper we introduce and investigate the notion of \(\alpha - I_a - \text{open, semi} - I_a - \text{open and pre} - I_a - \text{open} \) sets via idealization by using \(\alpha \) - local function and studied their some properties.

Keywords

1. Introduction

Ideal in topological space have been considered since 1930 by Kuratowski[1] and Vaidyanathaswamy [2]. After that ideal topology generalized in general topology by Jankovi and Hamleet [3]. In 2005 Hatir and Noiri introduced the \(- I_a - \text{open set, semi} - I_a - \text{open set, pre} - I_a - \text{open set} \) [4]. Finally in 2014 \(\alpha - I_a - \text{open, semi} - I_a - \text{open, pre} - I_a - \text{open} \) sets are introduced by R. Shanthi and M.Ramesh kumar[5]. In this paper we introduced the notion of \(\alpha - I_a - \text{open, semi} - I_a - \text{open, pre} - I_a - \text{open} \) set and studied some properties of their.

2. Preliminaries

Let \((X, \tau)\) be topological space with no separation properties assumed. For a subset of topological space \((X, \tau)\), \(\text{Cl}(A) \) and \(\text{Int}(A) \) denote the closure and interior of \(A \) in \((X, \tau)\) resp. An ideal \(I \) of topological space is collection of non empty subset of \(X \) together with the following

(i) \(A \) and \(B \subseteq A \) implies \(B \in \tau \) (ii) \(A \in \tau \) and \(B \in \tau \) implies \(\text{Int}(A) \cup \text{Int}(B) \in \tau \). The triplet form \((X, \tau, I)\) is called the ideal topological space where \(t \) is topological space of \(X \) with an ideal \(I \). Given a topological space \((X, \tau)\) with an ideal \(I \) on \(X \) if \(P(x) \) is the set of all subset of \(X \), a set operator \((\cdot)^*:P(x)\to P(x)\), called a local function [5] of \(A \) with respect to \(t \) and \(I \) is defined as follows: for \(A \subseteq X \), \(A^{t,I} = \{x \in X/ U \cap A \in I\} \) for every \(U \in \tau(x) \) where \(\tau(x) = \{U \tau/ x \in U\} \). Additionally \(cl^*(A) = AUA^* \) defines kuratowski closure operator for a topology \(\tau^*(t, I) \), called the \(* \)-topology and finer than \(\tau \).

Definition 2.1

Let \((X, \tau)\) be a topological space. A subset \(A \) of \(X \) is said to be \(\alpha \)-open set [6] if there exists an open set \(U \) in \(X \) such that \(U \subseteq A \subseteq \text{Int}(\text{Cl}(\text{int}(A))) \). The complement of \(\alpha \)-open set is \(\alpha \)-closed. The collection of all \(\alpha \)-open sets in \(X \) is denoted by \(\alpha O(X) \) is called the \(\alpha \)-local function. The semi closure of \(A \) in \((X, \tau)\) is denoted by the intersection of all \(\alpha \)-closed set containing \(A \) and is denoted by \(\text{bcl}(A) \).

Definition 2.2

For \(A \subseteq X \), \(A^{t,I} = \{x \in X/ U \cap A \in I\} \), for every \(U \in \alpha O(X) \) where \(\alpha O(X) = \{U \alpha O(X)/ x \in U\} \) we write \(A^\alpha \) instead of \(A^{t,I} \). \(\tau^\alpha(I) = \{U \subseteq X/ \text{Cl}^\alpha(X - U) = X - U\} \). The closure operator \(\text{Cl}^\alpha \) for a topology \(\tau^\alpha(I) \) is defined as follows \(\text{Cl}^\alpha(A) = AUA^* \), for a topology \(\tau \subseteq \tau^*(I) \subseteq \tau^\alpha(I) \) and \(\text{Int}^\alpha(A) \) denotes the interior of the set \(A \) in \((X, \tau^\alpha, I)\).

Definition 2.3

A Subset of topological space \(X \) is said to be

\(\alpha - \text{open }, \text{if } A \subseteq \text{Int}(\text{Cl}(\text{int}(A))) \)

\(\text{Pre} - \text{open }, \text{if } A \subseteq \text{Int}(\text{Cl}(A)) \)

\(\text{semi} - \text{open }, \text{if } A \subseteq \text{Cl}(\text{int}(A)) \)
Definition 2.4 A Subset of topological space X is said to be

- $\alpha - I_a - open$ if $A \subseteq \text{int}(\text{Cl}(\alpha))$
- $Pre - I_a - open$ if $A \subseteq \text{int}(\text{Cl}(\alpha))$
- $semi - I_a - open$ if $A \subseteq \text{Cl}(\alpha)$

Lemma:
For a subset of topological space, the following properties hold:

- $\text{acl}(A) = A \cup \text{int}(\text{cl}(A))$
- $\text{acl}(A) = \text{int}(\text{cl}(A)), if A is open$

Lemma let $\text{be an topological space and A, B be subsets of X. then following properties hold:}

- if $A \subseteq B$ then $A_a \subseteq B_a$.
- if $U \in \tau \cap A_a \subseteq (U \cap A_a)$
- $A_a = \text{aCl}(A_a) \subseteq \text{aCl}(A)$ and A_a is $\alpha - closed$ in X
- $(A_a)_a \subseteq A_a$
- $(AUB)_a = A_a \cup B_a$
- if $I = \{p\}$ then $A_a = \text{aCl}(A)$

3. $\alpha - I_a - open$, $semi - I_a - open$, $pre - I_a - open$

In this we define the $\alpha - I_a - open$ sets, $Pre - I_a - open$, $semi - I_a - open$ and studied some properties of their.

Definition 3.1 A Subset of topological space X is said to be

- $\alpha - I_a - open$ if $A \subseteq \text{int}(\text{Cl}(\alpha))$
- $Pre - I_a - open$ if $A \subseteq \text{int}(\text{Cl}(\alpha))$
- $semi - I_a - open$ if $A \subseteq \text{Cl}(\alpha)$

Proposition 3.2.
For a subset of an ideal topological space the following hold:

1. Every $\alpha - I_a - open$ set is $\alpha - open$.
2. Every $semi - I_a - open$ set is $semi - open$.
3. Every $pre - I_a - open$ set is $pre - open$.

Proof:
Let A be a $\alpha - I_a - open$ set. Thus we have A is an $\alpha - open$

$A \subseteq \text{int}(\text{Cl}(\alpha)) = \text{int}(A) \cup \text{int}(A) \subseteq \text{int}(\text{acl}(\alpha)) \text{int}(\alpha) \subseteq \text{int}(\text{cl}(\alpha)) \text{Cl}(\alpha) \subseteq \text{Cl}(\alpha)$

Let A be a $semi - I_a - open$ set. Thus we have

$A \subseteq \text{Cl}(\alpha) = \text{Cl}(A) \cup \text{Cl}(A) \subseteq \text{Cl}(\alpha) \text{Cl}(A) \subseteq \text{Cl}(\alpha) \text{Cl}(A)$. A is an $semi - open$.

3. Let A be $pre - I_a - open$ set. Thus we have

$A \subseteq \text{Cl}(\alpha) = \text{Cl}(A) \cup \text{Cl}(A) \subseteq \text{Cl}(\alpha) \text{Cl}(A) \subseteq \text{Cl}(\alpha)$. A is an $pre - open$.

Remark 3.3
Converse of the above proposition need not be true as seen from the following example.

Example 3.4
Let $X = \{a, b, c\}$, $\tau = \{\emptyset, \{a\}, \{a, b\}, \{a, c\}, X\}$ and $I = \{\{\emptyset\}\}$. Set $A = \{c\}, B = \{a, b\}$, then A is $semi - open$ set, $pre - open$, but not $semi - I_a - open$, $pre - I_a - open$. B is $\alpha - open$ but not $\alpha - I_a - open$.

Proposition 3.5
Every open set of an ideal topological space is an $\alpha - I_a - open$ set.

Proof:
Let A be a $semi - I_a - open$ set. Thus we have

$A = \text{int}(\alpha) \subseteq \text{int}(\text{Cl}(\alpha) \text{Cl}(A)) = \text{int}(\text{Cl}(\alpha))$. A is an $\alpha - I_a - open$ set.
Remark 3.4
Converse of the above proposition 3.3 need not be true as seen from the following example.

Example 3.6
Let \(X = \{a, b, c, d\}, \tau = \{\varnothing, \{a\}, X\} \) and \(I = \{\varnothing, \{b\}, \{c\}, \{b, c\}\}. \) \(\) Set \(A = \{a, c\} \) is \(\alpha - I_a - \text{open}, \) but \(A \in \tau \)

Proposition 3.7
Every \(\alpha - I_a - \text{open set is both semi - } I_a - \text{open set and pre - } I_a - \text{open set.} \)

Proof: The proof is obvious.

Remark 3.8
Converse of the above proposition 3.7 need not be true as seen from the following example.

Example 3.9
Let \(X = \{a, b, c, d\}, \tau = \{\varnothing, \{a\}, \{b\}, \{a, b\}, \{a, d\}, \{a, b, d\}, X\} \) and \(I = \{\varnothing, \{b\}, \{c\}, \{b, c\}\}. \) \(\) Set \(A = \{a, b, d\} \) is \(\text{pre - } I_a - \text{open but not } \alpha - I_a - \text{open.} \) \(\) \(\) Set \(B = \{a, c, d\}, \) \(\) then \(A \) is \(\text{semi - } I_a - \text{open, but not } \alpha - I_a - \text{open.} \)

Proposition 3.10
For a subset of an ideal topological space the following hold:

1. Every \(\alpha - I_a - \text{open set is } \alpha - I - \text{open.} \)
2. Every semi - \(I_a - \text{open set is semi - } I - \text{open.} \)
3. Every \(\text{pre - } I_a - \text{open set is pre - } I - \text{open.} \)

Proof: The proof is obvious

Remark 3.11
Converse of the proposition 3.10 need not be true.

Proposition 3.12
Let \((X, \tau ,I) \) be an ideal topological space and \(A \) an open subset of \(X. \) Then the following hold, if \(I= \{\varnothing\}, \) then

1. \(A \) is \(\alpha - I_a - \text{open set if and only if } \alpha - I - \text{open.} \)
2. \(A \) is semi - \(I_a - \text{open set if and only if semi - } I - \text{open.} \)
3. \(A \) is \(\text{pre - } I_a - \text{open set if and only if pre - } I - \text{open.} \)

Proof:
If \(I= \{\varnothing\}, A= \alpha Cl(A) \) for any subset \(A \) of \(X \) and hence \(Cl^I(A) = A \cup UA = \alpha Cl(A). \)

1. By proposition 3.2. Every \(\alpha - I_a - \text{open set is an } \alpha - \text{open set.} \) Conversely if \(A \) is \(\alpha - \text{open set.} \) Then \(A \subseteq \text{int} \left(Cl^I(\text{int}(A)) \right) = \alpha \text{cl}(\text{int}(A)) = (Cl^I(\text{int}(A))). \) Hence \(A = \text{int}(A) \subseteq \text{int} \left(Cl^I(\text{int}(A)) \right) = (Cl^I(\text{int}(A))). \) Therefore \(A \) is \(\alpha - I_a - \text{open.} \) Thus \(A \) is \(\alpha - I_a - \text{open set if and only if } \alpha - I - \text{open.} \)

2. By proposition 3.2. Every semi - \(I_a - \text{open set is an semi - } I - \text{open set.} \) Conversely if \(A \) is semi - \(I - \text{open set.} \) Then \(A \subseteq Cl(\text{int}(A)). \) Hence \(A = \text{int}(A) \subseteq \text{int} \left(Cl(\text{int}(A)) \right) = \alpha \text{cl}(\text{int}(A)) = (Cl^I(\text{int}(A))). \) Therefore \(A \) is \(\alpha - I_a - \text{open.} \) Thus \(A \) is semi - \(I_a - \text{open set if and only if semi - } I - \text{open.} \)

3. By proposition 3.2. Every \(\text{pre - } I_a - \text{open set is an pre - } I - \text{open set.} \) Conversely if \(A \) is \(\text{pre - } I - \text{open set.} \) Then \(A \subseteq \text{int} \left(Cl(A) \right) = \alpha Cl(A) = Cl^I(A). \) Hence \(A = \text{int}(A) \subseteq \text{int} \left(Cl^I(A) \right) = (Cl^I(A)). \) Therefore \(A \) is \(\text{pre - } I_a - \text{open.} \) Thus \(A \) is \(\text{pre - } I_a - \text{open set if and only if pre - } I - \text{open.} \)

REFERENCE